AD=AQ77 032

UNCLASSIFIED

ROME AIR DEVELOPMENT CENTER GRIFFISS AFB NY F/6 9/3
MODES OF DIELECTRIC WAVEGUIDES OF ARBITRARY CROSS=SECTIONAL SHA==ETC(U)
JUN 79 L EYGES » P GIANINO , P WINTERSTEINER

RADC=TR=79=197 . NL




ApDAOY7032

-~

’ . - ~ »

June 1979

MODES OF DIELECTRIC WAVEGUIDES
OF ARBITRARY CROSS-SECTIONAL SHAPE

LEONARD EYGES

PETER GIANINO

ARQON Corporation, 260 Bear Hill Road, Walthsm, Massachusetts 02154
P. Wintersteiner T

4




.

sy

mmmmmmmnnwmacmm)-‘u
relesssble to the Natiomal Techaicsl Informstion Service (WTIS). At NTIS it
will be releassble to the gemeral public, imcluding foreiga matioms.

RADC-TR-79-197 has been reviewed and is approved for publicatiocs.

oy

C. YANG
Electro-Optic l'bv echnology Branch
Solid State Sciences Division

et e

rector, Solid State Sciences Division

&y;:dln:::“‘n“mﬂduh“!mﬁ.lﬁﬂ-
ist, or sddressee 1o organisation
please sotify BADC (E80), Hemscon AVB M O173%. This will soeiot e fa

|
:
E
5




SECUMTY CLASH PICATION OF Tuit ®488 (When Awe Baitered)

1%

—W
REPORT DOCURENTATION PAGE BEPORE COMPLETONG
=
RADC-TR-79-197 /
L) 3 YYPE OF REPOAT & PEMOD COVERED
/ In-House Report
ODES OF QUIELECTRIC A VEGUIDES & o
a BIT Yg()s IONA L&A PE  [€ PERToRming ORe REPOAT muNSER
e by e T

!~Tmucv Tam
m

l",) ’/ N/A
Massachusetts 01731

no
1 CORTROLLING OF 7 1CH waAnE AnD ADO"ENN \

rsteiner

FDeputy for Electronic Technology (RADC/
Deputy for Electronic Technology (RADC/ESO
Hanscom AFB

Hanscom AFB
Nuuchuneu- 01731

Unclassified

WTWW
N/A

(T IV ouYion (VATERERT (o ie Repert) q\ ,___5’_[/

Same

{ '

Approved for public release; distribution unlimited. -

1 MITEOUTIOn STAYENERT o/ Mo wotart! snteed in Biced 0. I Sftment Pun Reper)

Same

6 SuboL EmEnTany SOTES

*ARCON Corp., 260 Bear Hill Road, Waltham, MA 02154

@ unttly by Bioed mumber)

‘thv._oz;ra - sen

Optical waveguides
Waveguide propagation
Fiber optics
Waveguide modes

6 AGATRACY T - e =) > Shece
P An integral representation technique is presented for determining the modall
propagation properties of a homogeneous cylindrical dielectric waveguide of
apbitrary cross-sectional shape and index n] embedded in a8 medium of index
nﬁ Results are given for weakly guiding fibers of various shapes. Among
these are rec'angles and ellipses, which makes comparisons with previous

work possible. v

Unclassified
[ _ {4 v e

SO I0u P ' BOV 60 13 OBNOLE TR

§09 0850




Summory

A technique is presented for determining the modal propagation properties of
a homogeneous cylindrical dielectric waveguide of arbitrary cross-sectional shape
and index ny embedded in a medium of index ny. For the cylinder parallel to the
z-axis all field components can be derived from Ez and ll'. Integral representa-
tions for El and B! are derived which satisly the appropriate Helmholtz equations
inside and outside the guide and which guarantee that the boundary conditions are
satisfied. On expanding Ez and B' in certain sets of basis functions the integral
representations become a set of linear equations. The vanishing of the determi-
nant of this set yields the propagation constants of the various modes. For the
important special case of weakly guiding fibers (hl - "2)' E' and B' become small
and we deal instead with the relatively large transverse rectangular components
of _F_:_ and _lz any one of which satisflies a Helmholtz equation inside and outside the
guide. As with the general case, an integral representation is derived, basis
functions are inserted, and a determinantal equation is generated whose roots
yield the modal propagation constants. Results are given for weakly guiding libers
of various shapes. Among these are rectangles and ellipses, which makes com-
parisons with previous work possible,
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Modes of Dielectric Waveguides
of Arbitrary Cross - Sectional Shape

L. INTRODUCTION

With the increased interest in fiber optic or integrated optic communication
techniquea has come a need to know in increasing detail the propagation properties
! Goell, 2 Marcatit®). 1In fact, the
literature has so burgeoned that it would be exceasive to try to quote all the
individual papers that discuss the subject, Happily, there are by now several

of cylindrical dielectric waveguides (Gloge,

excellent books and review articles that make this unnecessary (Marcuse, ‘
Kapany and Burkes).

The problem of electromagnetic propagation down a dielectric cylinder is
closely related to the problem of scattering of electromagnetic waves from the
same cylinder. It is then not surprising that methods used for the scattering

problem (Eyp.s) have also been applied to the problem of propagation. Thus,

(Received for publication 3 July 1879)

1. Gloge, D. (1971) Appl. Opt. 10:2252.

2. Goell, J.E. (1969) Bell Sys. Tech. J. 48:2133,

3. Marcatili, E.A.J. (1969) Bell Sys. Tech. J. 48:2071,
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Press, N.Y.
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point matching (Gocllz) and ray tracing (Love and Snyder; de vm") techniques
have been applied. Despite much work, however, there is no one general analytic
method which applies to single guides of arbitrary cross-sectional shape and to
the coupling between two or more such guides.

In this paper we present such a method for single guides; its extension to
coupled guides is in preparation. The method is largely analytic although finally
machine computation i8 requir'd. The method not only provides new techniques
for irregularly shaped guides, but also has the minor advantage of providing neat
derivations of the standard formulae for single circular guides, including the well-
known approximations that arise when the index of refraction is little different
from that of the surrounding medium. The present method is an extension of
recent new techniques for solving the problem of scattering by irregularly shaped
dielectric bodies, and in the static limit, for solving the problem of an irregular
dielectric or permeable body in an external field (Eyges, " Eyges and Gianino, '
Nelson and Eygesg). The general idea here is the same as in those papers. That
is, an integral representation for the various field components is derived that is
equivalent to the appropriate differential equations inside and outside the guide and
that guarantees as well that the various boundary conditions are satisfied. These
differential equations for the field components inside the guide have a set of known
solutions that can be considered as a set of basis functions, The field components
can be expanded in a series of these basis functions, with unknown coeflicients,
On introducing the expansions into the integral representations, they become a set
of linear (matrix) equations whose matrix elements involve these basis functions
in line integrals that are taken over the boundary of the cross-sectional shape.
This is the only way the boundary enters; there is no need to match interior and
exterior solutions across it, Since the set of matrix equations is a homogeneous
one, it has solutions only for certain allowed values of the parameters involved,
(Ome of these parameters is the propagation constant we seek,

The description above applies to a guide of index n embedded in a medium of
smaller index n, but with no other restrictions on the magnitudes of " and n,. In
practice however, it is very common for n, to be close to ny. In this "weakly
guiding’”’ case certain vectorial aspects of the general procedure outlined above
become simpler, and, in fact, the problem can be reduced in a good approximation
[ to a scalar one. We have therefore concentrated on this scalar formulation and
have based our numerical calculations on it,

7. Love, J.D. and Snyder, A.W. (1977) Ann, Ielgcgmmmic!um 32:109;

de Vita, P. (1977) Ann, Telecommunications 32:115. T
8. Eyges, L. and Gianino, P.D. (1979) IEEE Trans. Ant. & Prop. AP-27:557,
9. Nelson, A.E. and Eyges, L. (1976) J, Opt, Soc. Am. 66:254.

10




2 INTEGRAL REPRESENTATIONS FOR THE WEAKLY GUIDING CASE

In this section integral representations in the weakly guiding case are derived
F for the cylindrica! guide of arbitrary cross section sketched in Figure 1, The
time dependence is given as e'w‘, so that, for example, the electric field E(r, t)
is written as E - E:u e"""'. The guide medium is u;umed uniform with index of
refraction n, and dielectric constant ¢ 1 related by ny oty and similarly the
external medium 18 characterized by n% €2. ThenE (similarly B ) satisfies
(vz * kf) _E_IU + 0 inside the guide and (v? . k;) !:H » 0 in the external medium,

where kl # nllto, kz nzku and kn s w/e,

Figure 1. Cross Section of a Cylindri-
cal Dielectric Guide Parallel to the z-
Axis. The cross-sectional area is
denoted by A, its bounding curve by L,
the outward normal to the cylinder is
n, and the unit vector tangent to L. is t,
he positive z-axis 8 out of the plane

of the paper

For solutions that correspond to wave propagation along the guide, it will be
assumed that the only z-dependence is e“‘.'.

2% 2eN ws
§ e & (1)
B, B
where p is a vector in the plane perpendicular to the z-axis and k_ is the propaga-
tion constant in the z-direction. It follows that E(p) and B(p) satisty




E@)

(v;" . 1?) + 0 inside the guide (2)
B)
E(g)

(V? - vg) = 0 outside the guide (3)
Bp)

where v,z 18 the two-dimensional Laplacian and

g 4)

Eq. (3) reflects the fact that the external fields decay with increasing distance
from the guide.

It 18 well known that for the present problem the transverse components of
E and B are derivable (rom Iix and ﬂz. For example, the perpendicular compo-

nents £ inside the medium are given by

~ i i
l».‘ 3 3 [ku(v‘ XB) k“(v; E?)I
i « 1 k® -k - i -

O R

On forming the transverse tangential component E, by dotting this witht - z X n
and doing the same for B‘ we find

i aE B
E 7 % "= (5)
Lf
4B aE
- il o
B, 3 (k‘ 3t ¢ ¢ Kk, m ) : (6)
1

Similar formulae hold outside the guide, with < and )f replaced by L and “1:,
respectively,

We want to derive integral equations for E_ and B, and want these equations
to incorporate the boundary conditions, which are that the tangential components
of both E and B be continuous across the boundary curve L. These tangential
components are the longitudinal E, and B' and the transverse E, and B‘. To get

the required integral representation we follow a procedure very similar to that in

12
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a previous paper by Eyges, ‘ It is easy to find an integral representation for B!
which satisfies Eqs. (2) and (3) and also guarantees that Ez be cortinuous. This
L8

S e 2 e ' '
E’t(‘l) . (1‘ . 12) / l.z(p_ ) L'z(e-,e ) dA (&)
where the two~dimensional Green function satisfies
2 2 M ' 8)
(V; -';2) 3’2(;1,2 )« 8 -p") . (8

There 18, of course, a similar equation, with similar properties, for B!. How -
ever, these equations do not satisfy the conditions that l-:t and Bl be continuous,
The reason they do not is that the condition of the continuity of E, and Bt can be
rephrased as a condition on the discontinuity across the boundary of al-:!/an and
3B,/ an (ump condition), whereas Eq. (7) implies that E’ 18 continuous, and the
similar equation implies that Bz is conttnuous. But Eq. (7) can be modified, much
as in the previous work on scattering, by the addition to it of certain line integrals

that guarantee that the jump condition be satisfied, and we shall do just this.

To get the jump conditions we use Eq. (5) for l-:l just inside the boundary
{subscript -) and equate it to its counterpart for F.‘ just outside the boundary
(subscript +) to find

aE aB aE aB
Ak, R -k E) oL Lk Rk ) (9)
W? g o an .'3 g ot o on g
1 2

Now gince l-’.' is continuous across the boundary so is aE! '8t 8o we do not need
subscripts « and - on it. Thus, Eq. (9) becomes a condition on the discontinuity

of the normal derivative of B!:

2 2
aRn aB Y aB Kk Y aE
bt [ ginst | = B b ik | =8 ksl
anL i)ni el P - it s el (10)
* - 7y - o "1

In much the same way, the continuity condition on B' becomes one on the discon-
tinuity of the normal derivative of E.:

2 2
aE 3E € Y aE k Y
z B 1.3 .- 2 2
ot N o o ‘1) : —+‘2 " :f *1 1 % . an
1
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To exploit these results, we recall some properties of the following line
integral over the boundary, a function of p we designate by Ug):

Q) - / L'z(e,e_') alp') dL.! 12)

where o 18 for the moment an arbitrary function. It is well known that t(p_) is
continuous across the boundary but has discontinuous normal derivatives

Ml Nl .
on), on| atg) (13)

where p on the right hand side of Eq. (13) is, of course, on the boundary. Now
we add to the provisional Eq. (7) for Ex a line integral like Eq. (12) but with °(£’
taken to be the function on the right hand side of Eq. (11), to get:

EQ -2+ vd JE " ) EAY - b R I
2 Mt ] EEVR, e < 2 “avM a9 W |,
A 1L

k.32, 1%
. -:: h.., . 11) -&—,1 "'2(“)‘.2 ydL* . (14)

This is now the final desired equation for Ex' It still satisfies Eqa. (2) and (3),
guarantees the continuity of E., and, in addition, by virtue of the line integral in
it and Eq. (17), now satisfies the jump condition Eq. (11), 1. e., the condition on

the continuity of B‘. The equation for n', derived similarly, s

k_3E
x i)

ar'

= o

5, @.p"dL' . (15) ]

2 2

B )-.(20 2)/“ " v)“u-l—!—j—l—z— .8_?.!.

22 Wt e g 3 an
A : T L

For many purposes it is convenient to transform Eqs. (14) and (15) by replac- 1
ing the area integrals with line integrala. Thus, in Eq. (14) in the integral over A
2 H o .2 A
we can use -y, (12 bipg - p" ‘J‘l'z and o0 E‘ t{El and rewrite it as

follows:

14




2 2 ' e = = 2 Y 2 )
'hl"z)ftz'wzu /(MQ M vlg’z)ElM . fvlz.gzu
A A A

[
> 2 " 2 '
E_+ f ng v " I:.l y dl. (@ inside guide) (16)
L

where we have used Green's second identity in deriving the last equation from its
predecessor. With Eq. (16) in Eq. (14) we find after cancelling some terms:

Bg 2
« Y 3E K
[ a2 [ 28 w-dyEatend
0 f l&.' o dl. aa .52 an | dl. ;—-;-! k. hl - 12)
L 5% L gy "
[ aB
—‘m, 5’2 aL' . an
1
In much the same way, Eq. (15) becomes
- "‘L, 2 2 2
b} aRn K 17 ¢
0 -j B —'—.3 Aal.t .-1 _-.,‘ g 41"+ -1 _J__-l
z 9n 2 an 5 X 2
b - 2 ) Y
1 1 1
AR ;
acsiodis '
,/ av &, aLt . (e

These are the basic integral representations of the theory,

3. EQUIVALENT SETS OF LINEAR EQUATIONS

In this section the pair of integral Eqa. (17) and (18), is reduced to an equiva-
lent pair of sets of linear algebraic equations by evaluating them at small p, much
as was done in previous related work of Eyges, ¢ We assume that p is much less
than the smallest value of o' that appears in the integrands of Eqs. (17) and (18).
We can assure that this is possible by choosing the origin of the coordinate system
in Figure 1 appropriately. Then, for use in Eqs. (17) and (18) we have the Green
function expansion

15




L

R | 0 Ja(e-0")

5 e 3 s, v e (19)
1" ~>
whence |

0‘1 o«

- | ue 8 » -i1é'
G 2 3,000 o0 2 a0 MY (20)

!l =

1f Eqs. (19) and (20) are inserted into Eqs. (17) and (18), there results, on drop-
ping the common factor -1 C)J'hf)

2 2
aE K +2\ o8
wi. " o Ué el i i WO k4
/ E,(p" 5 (M, (e e ) 0 e il L B E T
A My 37 " j
N oile’ =
H' Hvrv Ye dl. 0 21)
2 %
vy, 4B k 9 aE
N PRGN O B (e i Vi
/ B gar Hyrgpfe "7 ) iwm CE |\t
Y o Y
1 1 1 4
Y e’ "
H, (') e L' -0 . (22)

Now Eqs. (21) and (22) are reduced to sets of linear equations by expanding E‘(p')
and tl’(,,') in the sets of basis functions J.h‘p) CO8 8¢, J.h‘p) sin 8¢, or
J‘h l'” e'*  For the moment, the exponential form ia more convenient, so we

write:
-
LIRS
r
BK" - 2: B I e e 28
LT

16




B

We shall assume that the normal 2 is expressed in cylindrical coordinates,

- - -

3 LRA L

(25)

o

although, it can be advantageous, particularly with a cylinder whose cross section
is a polygun, to express n in Cartesian coordinates. In cylindrical coordinates,
for a contour L. that t# deflned by 5 » pl@), one has:

4L Y
DR EENERS oC) (26)

where

—e

aL - Vol s (do/der? e . @1
Given Eqs. (23) and (24), the various quantities that enter Eqs. (21) and (22) are

..a_!.;_!.‘ﬁ:’.') 't . C'B " . Q.L_' 5 = B Q‘~' J( " _Ais '

an' - v'B.e 30" “ hE il A o' ﬁ_'

8"~

J.(*: lp')}

and stmilarly for E_. For 3B_/3"' we have, tuhj' »2' X

&R (e') B n aB
z =t % nt _ v - " -
e XA 9B ey, 5t -

-] =
d1.’ ise' ' ' &' . '
("a;.-) E B. e {”J.h.p ) vy tlJ.h‘o )}

These results are put into Eqs. (21) and (22) and the integration is converted to
one over d¢' via dl.' - (dL.' /dé¢')d¢', whereupon these equations become:

- 4 12 B
A- "u 2 2 Nlc % <, Qu 0 29
8 -w @2

17
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Z -A,Q,, +B, M, ) “ T 0 § o O Ah A saien 1208
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where

ir [

a-1)¢ . ‘ L A N '
.\1“ f e Ju()'p) $Y,0 ”’(l'yzp) . (%) H'(nzpi de'

O L

-

2y
R HERYAT' N . P s s dp' ‘ ‘
N, o [ e ‘e H Gyet) |yye'diyge )-;77’%-;.].(110$ de' (30)
o =
k 2 2e
Y2 Hu-1) 8"
Q‘. ;‘1 l';—? f e'® yll'ln..,p') 1lJ"(1l,,')ﬁ-; . \lJ.hlp') do .
- A e

The homogeneous set of Eque, (28) and (29) has solutions only if the determinant
vanishes, Then the various roots of this vanishing determinant yield the propaga-
tion constants of the different modes of the guide,

Eqs. (28) and (29) can be applied to circular guides (radius a) to obtain re-
sults that are of course not new, but which do serve as a useful check on our pro-
cedure. For a circular guide 8 3¢ - 0 and all the off-diagonal matrix elements

are zero, that is,

.\I'. . 2'!}23.1'(1‘.)";(le)b'. (31
¥ 2 '

N'. . '2”72"’!”'(’1.”"“’2')611 (32)
Q. - 200k /k M1 *+3/3113, (v, 8V H, (iy,a)8 (33)
s g o 2/M 1 'y £V 13 %

If we let x - YR and y - " n in Eqs. (31) to (33), substitute these expressions
into Eqs. (28) and (29), and then eliminate the A, and B

‘ between these two equa-
tions, we get the standard dispersion relation (Marcuse®);




l(. v)(-J'(v\'J LM = e, kO ‘x)(H'(t:)/H (tx)) X

(34)

222 22, 4 4

lJ;(y) ¥J,00 - !l;(tx)fxllt(tx)l k (y -x%/x" y .

4 INTEGRAL REPRESENTATIONS FOR WEARLY GUIDING FIBERS: n) ¥ ng

An important practical case occurs when n, v n, 8o that the fiber is "weakly
guiding.” For circular fibers ()logel has shown how the conventional treatment
can be simplified. His essential point is that the longitudinal components E and
h become small compared to the transverse components E | B and in hc!

| e
l~'.r }I; ALY the same for B, B.. A similar result holds for the modes of
the slab guide. It 18 clear, and we -hull verify this below, that Gloge's arguments
can be also applied to weakly guiding fibers of arbitrary cross-sectional shape,
It then becomes more convenient to abandon the treatment of Section 3 in terms of
l:‘ and “r and to deal directly with the nonvanishing transverse fields EL and B‘.

We want then to obtain integral representations for l*:i and Bx analogous to
those of Section 3 for F., and B’. To set up these latter integral representations,
se had to take into account the continuity properties of their normal derivatives
acrosas the boundary, Similarly, in setting up the integral representations for El
and B we must again inquire into the possibility of boundary discontinuities. To
begin, we cbserve that the tangential components of E and B must be continuous
across the boundary. What about the normal derivatives of these quantities ® To
study this we set up an orthogonal n, t coordinate system with its origin at some
point on the boundary, wherein the n-axis is along the direction of the normal f\_,
at that point, and the t-axis i along the direction of the tangent vector _3 Then,
in terms of these variables the z-component of < » l_! just outside the guide is
(¢ X lj)’ : (an‘ an - BBn ), - th, = 0. We can write a similar equation just

inside the boundary and hence conclude

aB aB aB
(.__1 __.!1> (._.._1 o _...D) (35)
n at E an a 5

Now € - l_! - 0, which means that nn ia continuous acroas the boundary, and, hence,

that its tangential derivative ann ‘at is also continuous. Then Eq. (35) becomes

B aB
s | [, |
an |, an | (36)




In short, the normal derivative of the tangential component {8 continuous across
the boundary. Constider the rectangular components B‘ and B . If B' and By and
their normal derivatives are continuous across the boundary, then the tangential
component of Bx (a linear combination of B and B ) will also have these con-
tinuity properties. Arguments similar to !hc ubove also apply to E_ and E

Let @ be either of E Ey‘ B‘ By Consider Eq. (7) with E, repllceg by @:

0p) - - (] + 4D f"«e’l. (.p") dA" . (37
A

As we have seen, this guarantees that Fqs. (2) and (3) are satisfied and that ¢

and 3@ /dn will be continuous across the boundary (Eyges and Nellon‘o). 1f this
equation is satisfied, we can take @ to be either B‘ or Bv‘ or a linear combination
of the two of them. This linearly polarized mode will then propagate down the

guide of arbitrary cross section with propagation constants and modal character-
istics that are governed by Eq. (37) and with an E field that is perpendicular to the
B lield, as determined by Maxwell's equations. Note that Eq. (37) can be converted
to a useful line-integral form by the steps that led from Eq. (16) to Eq. (17), It be-
comes, for e inside the guide,

o,
. . ’d
[ . T &, ) o 5. (38)

L

It is worth observing that Eq. (38) can be derived in an alternate way that is re-
lated to the so-called Extended Boundary Condition method (EBC) which has re-
“). Basic to this method
is an integral representation (Huygen's principle) for an amplitude @ which satis-
fies (VT - 12)0 « 0 in the exterior region, namely

cently been exploited for scattering problems (Waterman

9!
o) - f e 3—" g, [ 9 . powsde . (39)
L

It is well known that if this equation is evaluated in the interior (canonical proce-
dure in the EBC method), it yields zero on the le hand side:

10. Eyges, L. and Nelson, A.E. (1976) Ann. Phys. 100:37.

11. Waterman, P.C. (1969) ). Acoust, Soc. Am,. 45: lﬂ‘i and (1971) Phys. Rev.
D3:825.
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But for the present problem we have & - & and 3¢ 'on| - 38/ /én|_and when
these two equations are substituted into the above, the basic Eq. (38) is reproduced.

3. SYMMETRY CONSIDERATIONS

Either of the integral representations (37) or (38) can now be converted to a
set of homogeneous linear equations and a corresponding determinantal equation
by inserting «n them an expansion in the interior solutions J.hloi e'“. In lact,
it {8 more convenient to use trigonometric functions, so we shall assume as the

general interior expansion for @ for a guide of arbitrary cross-sectional shape:

-
0 ) Z 3,0,9) (€, cos (8) + D_ sin (s8)} . (40)

80

Eq. (40) is in fact too general in that almost all practical guides have symmetry of
one kind or another. [t (s then useful, indeed almost imperative, to sort ouwt in
advance the limitations that such symmetry implies for the coefficients in Eq. (40),

In this paper, for example, we shall analyze, among others, guides of rec-
tangular or elliptical cross section, 1f the axes of such an ellipse or rectangle
concide with the x- and yv-axes, then by usual parity arguments of quantum
mechanics the amplitude ® must be either symmetric or antisymmetric about the
x-axis, This means that ® can be expanded in terms of cither sines or cosines.
Stmitlarly, reflection symmetry about the v-axis can be used to show that both the
sine and the cosine expansions split into two other cases, in one of which s runs
over even values and in the other over odd values, In short, there are for ellip-
tical or rectangular cross sections (or any guide with similar twofold reflection
symmetry) four types of expansions, labelled by R (for rectangle) with superscripts
I through IV:

Q(Q) » 2 C. J.h lo) cos (8¢) (41a)

21




R O(Q) L C.J‘hlp) cos (8¢) (41b)
81,3, 8...

R e - E D_J (y,0) sin (8¢) “1c)

: o sVa' NP

8:2,4,6.,.

v

R ep) 2 D‘ J.hlp)lm(so) . (41d)
1,35

If, in addition to the twofold symmetry in the perpendicular axes of the rec-
tangle or ellipse, the guide has the symmetry of the square (reflection symmetry
with respect to diagonals), the classifications of Eq. (41) are modified in a way
that cannot be derived by quite so simple reasoning as the parity arguments above,
The results are, however, a straightforward consequence of group theory and of
the fact that the symmetry of the square 18 described by the group C(v‘ which has
four one-~dimensional irreducible representations and one two-dimensional one,
This leads to the conclusion that there are four expansions, namely, Eqs. (42a-d),
which lead to four different (nondegenerate) sets of propagation constants, and
two expansions (Eqs. (42¢ and N) that vield that same set of propagation constants

(degenerate modes]. These are

r
.“i) 2 ('n J.h ln) cos (8¢) (42a)
s-0 4, 8,..
! <
0(6) . (‘. J‘(')lp) cos (s¢) (42b)
4 8:2,6,10
o) D. ‘,nhl") gin (8¢) (42¢)
82,610
RHl

o) - D. J'h lp) sin (s¢) (424)




1

R ep) - C. J.h ‘p) cos (8¢) (42¢)

8*1,3,8...

rRY e - D, J,(v,0) sin (se) . 420
8+1,3,8...

However, in order to relate the modes of the square to their counterparts of the
rectangle, we have kept the mode notation introduced in Eq. (41). Thus, in

Eq. (42) Rl still refers to "cos, even 8" modes and R" to "cos, odd 8" modes,

etc,

6. EQUATIONS FOR THE WEAKLY GUIDING CASE

Given the expansions of Eq. (41) or (42), we can insert any of them into the
integral representations (37) or (38) and use the expansion of the Green function
to obtain a set of linear equations and hence a determinantal equation for the modal
propagation constants,

One question of strategy i8s now whether to choose the line integral represen-
tation (38) or area integral representation (37). The former choice might appear
to be the obvious one since the line integral matrix elements it generates are one-
dimensional, and hence ostensibly simpler than the two-dimensional integrals that
Eq. (37) would yield. In fact, they are generally simpler and we shall choose to
work with Eq. (38), but Eq. (37) should not be set aside completely; it ia particu-
larly useful for guides that are not too far from circular. In this case it lends
itself to a convenient perturbation analysis (Eyae-”) in which the integration is
broken up into one over a circle (for example, inscribed within the cross section,
or of the same area) which generates diagonal matrix elements, and an integral
over the remainder area which vields off-diagonal, but small, matrix elements.

For the present work with Eq. (38) we shall need the expansion of the Green
function in sines and cosines:

‘72‘&'2., . :‘l Z <, ",(ijzp')J’ (1zp)|(‘ul 1¢ cos 1¢' + sin 1¢ sin 1¢')
I-0
peyp' (43)

12. Eyges, L. (1978) Appl. Opt. 17:1673.
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where 4 the Neumann factor, 18 1 (f 1 - 0 and 2 otherwise. The details involved
in substituting Eq. (41) or (42) into Eq. (38) are similar to those spelled out in
Section 3. The cosine expansions ultimately vield the system of linear homogene-

ous algebraic equations:

E (‘. Gl' « 0 (44)

whereas, the expansions involving sines eventually produce

E D.T'. a . (45)

The indices 1 and s in the above equations are either both even or both odd and
take on the values specified in Eq. (41) or (42)., (i“ and T“ which are line inte-
grals taken about the perimeter of the guide, are given by:

2
G‘” / de' “‘".(p" cos 18" cos s¢' + l.'.(p'.O')

. (4]
{8 cos 18" sin 8¢’ - | 8in 14" con o'} (46)
2r

T“‘ . f do'[l-‘“(p‘) sin 1¢' 8in s¢' - l.“(p',v\

O

[ 8in 18" cos 8¢’ = § cos 1¢' &in 8o')] 47

with
F'.(p’) r e, h‘o'n'ﬂwzn').l‘.h‘p‘) - 725'"; “’29'”,(719'” (48)
Ly a0 0" < € M, (ir3003 (0 3 /ot 49

The related determinantal equations are
det (G“) -0 (50)
det (T“) « 0 . (51
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One can easily recover the familiar dispersion relation for a weakly guiding
circular guide of radius a from Eqs. (44) to (49). G becomes diagonal (and iden-
tical to T) because L, - O and F,  comes outside the integral. Then the condition

l~‘“ ' (wln)ll'(nza).)" hln) - (nzl)ll;(nzl)J'hla) =0 (52)

holds for all 1 and, when satisfied, gives the modes of the circular guide.

7. COMPUTATIONAL TECHNIQUES

In this section we outline some of the details of our computational techniques.
For the work of this paper, Eqs, (48) and (49) are modified in three ways. First,
the Bessel function derivatives are eliminated by use of the general recursion

relation

“ . E ~

Citx) = €, (x) - = C(x) . (53)
Then the Hankel functions are replaced by Modified Bessel functions of the second
kind, using

.-(l +1)

K, (x) . (54)

2
"'(IX) v 1

Finally, the arguments 7 and Y, are expressed in terms of a normalized propa-
gation constant, 5’2_ and a normalized binding constant, j3. Pz, following Goell,
has been normalized so that it varies between 0 and 1 only, while J characterizes
the refractive index difference, the smaller guide dimension and operating fre-
quency, hence the extent to which the field exists outside the guide, These quan-
tities are deflined to be

off .2 42
e o Tl i (s5)
kl -kz Vs ¥ Y2
1/2 12 bk 1/2
P Y. T il O il P NG T
-3 (hl lz) v ) ‘72) = (ﬂl “2) . (586)
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where b is the semiminor axis of the cross-sectional shape. * One should note

that with these definitions specific values of b, ko, n., and n, are not required.

1
One then obtains
‘ 2
p.nah-p% i 1,0 *TPBp/b . (57

With these modifications, Eqs. (48) and (49) can be rewritten as

o = 3¢ 820 D) m e o B [ 2
Frglo = 2¢,8 51 )J‘_l (452- \x-P) V-P
" .’ . P .") -
PJ “LLb Y- ) . ( 3
2 ~te1) . [2pPp: t8p' o 2
c‘(l-l)'l l\'( b )Jﬂ(b \l-!’) (58)

and

Lianen e U (2 ) i (4 ,n-p?) %/

(58)

To extract numerical results, four things must be done, First, 5(¢) must be
specified; second, the matrix elements (‘." (or T“) must be computed; third, the
roots of the determinantal equation must be found; and lnally, for each root, the
coellicients (‘- (or D-D are to be found to within a normalizing constant so that the
field configuration can be determined from Eq. (41) or (42).

To calculate the line integrals that comprise the matrix elements there are
two computational possibilities, (me can express the integrands in rectangular
coordinates and integrate over dl. directly, or one can convert the line integrals
to angular ones by writing dl. - (dl. 'd¢) d¢ and integrate from zero to 2%, The
latter procedure is clearly desirable for curved boundaries (for example, ellipses)
for which p and 3p '3¢ are continuous functions of ¢, but for rectangular cross

sections the direct ini' yration seems more straightforward., For the sake of
generality in the computer programming, however, we have calculated the matrix
elements even for rectangular boundaries by angular integration, using the function

N N

2(8) = blicos? ¢/RHN + (sin? 9N "1/2 (60)

'mm this definition, 3 turns out to be one-half of Goell's corresponding quantity,
B.
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for the perimeter. This gives a figure with a short axis (along ¢ - +7/2) of length
2b and a long axis (along ¢ - 0, *) equal to 2Rb_ where R is the aspect ratio. In
general, for arbitrary R, Eq. (60) describes a rectangle if the parameter N {8
chosen to be infinity (Alhrd” and (;nrdner“) and an ellipse tI N 1, Shapes
with 1 « N <« » are called "superellipses” ((Zardner“) and can be regarded as a
continuous deformation of an ellipse into a rectangle as N increases. Shapes with
0.5 <« N <1 are called "subellipses” ((inrdner“) and can be regarded as a contin-
uous deformation of an ellipse into a parallelogram. N - 0,5 gives a parallelogram,
and (f 0 < N « 0.5 one obtains figures with four cusps, tending toward crossed
straight lines as N - 0. Whenever R - 1 in the above analysis, the rectangle and
the ellipse become the square and the circle, respectively,

In Figure 2 we show the first quadrant of some of the shapes obtainable for
various N with R - 1, Regardless of the values of N or R in Eq. (60), reflection
symmetry about the x- and y-axes produces a closed ligure throughout the four
quadrants., Thus, use of Eq. (60) assures continuity of dp /d¢ over the entire
range of ¢, thereby eliminating the need of subdividing ¢ into several intervals
whose boundaries depend on R.

The fractional error one makes in taking Eq. (60) as an approximation to a
rectangle 18, for a given value of N, independent of R. The error in ple) 18 worst
at the corners but becomes small very rapidly for values of ¢ away from the
corners. We used N - 30, which gives a [ractional error of 0,012 at the corners,
0.002 one degree away, and 0, 00025 two degrees away. For N - 10 the values at
the same three angular positions are 0,034, 0,020, and 0,011 respectively.

Because of symmetry, the integrals (46) and (47) need to be done only over
the interval (0, */2), With the transformation z -~ -cos 2¢, they become suscept -
ible to Chebyshev integration (!hldvbrund”) which takes equally spaced points in
the range (-1, 1) with equal weights., Generally, "0 points were sufficient to obtain
the required accuracy, aithough checks were made with many more,

In order to satisfy Eq. (50) or (51), the determinamts were truncated and then
evaluated at equally spaced values of Pz. The roots were located approximately
from the table of these resultg, and a half-interval search (Hornbecku) was used
to pin down the values of 5’2 to four significant figures. The number of terms to
retain was determined empirically, with two terms being sufficient in many cases.
For a given mode of a given guide, the number of terms needed for a certain

13, Allard, J. (1964) Math. Mag. 21:210.
14. Gardner, M. (1965) Sci. Am. gﬂ_ﬂ??.

15. Hildebrand, F.B. (1956) Introduction to Numerical Analysis, McGraw Hill,
N. Y., p 330.

16, Hornbeck, R.W. (1975) Numerical Methods, Quantum Publishers, N.Y.,
p 65,
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Figure 2. Plot of the Function p(¢) Given in Equation (60) for
D«<¢= 2 20nly, N -3, and Various Values of N

absolute accuracy in l’z does not depend on 3. However, in general, different
modes require different numbers of terms to give results with the same accuracy.
The computations were carried out on a CDC-6600 computer. The time required
is nearly proportional to the gquare of the dimension of the determinant, for a

g ven number of roots and accuracy. Thus, a three-term truncation procedure

might use 10 sec to locate three roots to within 0, 0001, Using four or more termas,
it 18 usually possible to search a limited region near a root and thus save time.

& RESULTS AND COMPARISON WITH OTHER WORK 1

We have investigated the properties of weakly guiding waveguides having all of
the various cross sections described in Section 7 and aspect ratios ranging between
1 and 10. [In this section we present some of gur results, to demonstrate the util-
ity of the method and make comparisons with previousiy published work for the
more common shapes.
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A1 Rectangular Crose Sections

For the rectangular waveguides having aspect ratios 1 « R = 2 we have
located more than two dozen modes in the range 0 <« 3 < 4. [ he curves for the
propagatica constants (li’2 versus ;i) corresponding to approximately the first
dozen modes for each aspect ratio are plotted in Figures 3, 4, 5 and 6 for 8
values up to 2. 5. Each of these curves corresponds to one of four types of field
function when R > 1 (see Eq. (41)) or one of six types when R + 1 (see Eq. (42)),
These Neld functions are designated Rl through Rlv. The mode corresponding to
the n-th root of the X«th type of determinant (see Eq. (50) or (51)) is designated
RY.
expansion with even indices.) The ordering within a family 18 governed by the

(Thus, the first (noncutof mode is labelled R‘l because it involves a cosine

value of 3 at which cutoff occurs; n © 1 designating the mode which cuts off at the
smallest 3. Since for R > | certain modes "cross over’ (for example, see RI3 and
Rl‘ in Figure 6), this choice must be kept in mind when considering modes at
values of 3 above the crossover point (for example, see the values of 3 for these
same two modes in Table 4).

As was noted in Section 5, the special symmetry of the square causes the even
expansions to split into two series each, Thus, consider the two cosine expansions
of Eqs. (42a and b): The first mode determined using Eq. (42a) is the first mem-
ber of t%e R‘ family (that s, R'l) and its field expansion is given as ('o.lo ¢+ (“J.
conde * ...... Whereas, the first mode determined using Eq. (42b) turns out to
be the third member of the same family (hence, R!!) whose field expansion has the
form (‘zJ con 29 (‘h"ﬁ cosfe + .,.... However, for the rectangular cross
sections (R > 1), the field expansions for all even cosine modes take the form
Co"o + (‘2J2 cos 2¢ * ("J‘ cosdd ¢ ...,

A crucial question underiying our approach is: How many terms must be kept
in the determinantal Eqs. (50) and (51} in order for the roots ta converge to de-
finite values” We now address this question.

The convergence of the Rtl expansion is rapid for both the square and rectan-
gular guides. For the square guide, Table 1 gives the values of P2 obtained for
this mode after truncation of Eq. (50) at 1, 2, or 3 terms for selected values of §.
Clearly, the two-term truncation is only a amall improvement, in terms of locating
the roots, on the single-term result, which 18 obtained by setting GOO = 0in
Eq. (50). Moreover, the extra work involved in taking three terms leads to no
gain whatsoever. In view of this, it is reassuring that the ratios of the second
term of the field expansion to the first ((“J‘/CUJO), and the third to the first
((‘rl. ’CoJo) show that the Jo term is dominant for this mode. The term ratios
listed in the 5th and 6th columns of Table | were evaluated on the perimeter at the
middle of one side (that s, o - b, ¢ - 0). Since J‘ and Ja become smaller as p
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Table 1. Results for the Dominant (Noncutofn R} Mode of the Weakly Guiding
Square Guide. Listed values of P2 were obtained after a 1-, 2, or 3-term
truncation of the field expansion. Term ratios derived from the 3-term solution
give CgJ. cos 4¢/Colg and C,,Jﬂcunso,’(‘ojo atp b, ¢ - 0. The feld intensity

atp =B, ¢ - 0is also given, e intensity at p - 0 is 1
p? Perimeter (g - 0) | Intenaity at

3 1 Term | 2 Terms | 3 Termsa (“J‘ (.0"0 (.8‘,8"(’0"0 ¢ 0
3.0 0. 9511 0, 9546 0, 95446 -0,314 0. 0006 0,023
2.5 0, 9326 00,9371 0.9372 -0, 266 0, 0009 0.032
2.0 0. 9023 0, 9072 0, 9072 -0, 213 0. 0005 0.046
1.% 0. 8442 0. 8497 0, 8407 -0. 153 0. 0005 0,074
1.0 0.7122 0.7175 0.7118 -0, 089 0, 0004 0. 143
0.5 0.3263 0.3290 0,3291 -0, 029 0. 0003 0.371

decreases, the term ratios are generally greatest at the perimeter and as such
constitute the "worst case’ for convergence. (For 3 - 3 at (p,¢) « (0. 5b, 0) the
term ratios are -0, 007 and « IO."’, respectively, The intensity (8 0, 576.)

Table 1 also lists the field intensity at o + b, ¢ - 0, normalized to a value of
1 at the center of the guide. For the more tightly bound cases, (higher [), the
field drops off to a few percent at the edge, whereas for weakly bound cases
(smaller 3) the intensity is still appreciable there, indicating that a greater frac-
tion of the beam (s extending bevond the guiding core, One can also see that for
those cases in which the second term ((“J‘ (‘OJO) makes the largest percent con-
tribution to the field, the total field 18 small; whereas for weakly bound cases the
second term (8 a much amaller fraction of a considerably larger Neld, (Similarly,
in the interior, the percent contribution of the second term drops quickiy as the
field intensity increases.) Viewing the guide as a whole, therefore, all terms
beyond the first one make unimportant contributions to the total intensity for the
dominant mode of the square guide, The same holds true for rectangular cross
sections,

In Figure 7 the field intensity 18 plotted as a function of 5 'b for this mode both
along a line thicugh the center of the perimeter (¢ -« 0%) and along a diagonal
(6 - 457,

We also obtain good convergence of the field expansions for the remaining
(eutoff modes. Table 2 compares the 1-, 2~ 3- and 4-term truncation results
of Eq. (50) or (51) for the first several models of the square. Comparing the
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P/v

Figure 7. Fleld Intensity as a Function of /b for the Rl Mode of a Square Guide
with i - 3. The two values of ¢ chosen represent the extremes of the intensity
distribution

2- and 4-term truncations, we see that only two terms are required for an accu-

-

racy of 0,01 in ',2 for 7 of the first 131 modes of the square. As for the remaining
modes, three terma are sufficient to bring the accuracy to within 0,01, except for
the degenerate R‘;ﬂl;\

Table 2, which also lists the mode designations, specifies in its last column

mode, which is accurate to within 0,02,

which term is dominant in the field expansion, This is indicated by the underlined
value, Thus, we see that for most of the modes the first term does dominate, and
it 18 this term used alone in Eq. (50) or (51) which produces the 1-term truncation
result in Table 2. For example, (:22 0 was used for the R_!‘ maode, 'I'22 = 0 for
F T“ 0 for the R;“ and either (‘.“ or T“ + 0 for the degenerate Rlll-Rllv
mode, The observation stated above concerning the R: mode is generally applic-
able to these other modes, That is, for many modes the higher terms in the
expansion are comparable in magnitude to the first term only where the field

intensity is small; otherwise, they are negligible,
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Table 2. Values of the Propagation Constant, Pz, for B = 2 for the First 13 Modes
of a Square Guide, Obtained with Determinants up to Order 4. Modes are ordered
according to the value of 3 at cutoff. Our mode designation and Goell's are listed,
and the dominant term in the field expansion is indicated by an underlined expan-
sion index. With l-term truncation, the dominant term only is used

Mode
Designation
PP at -2
This 2 3 at Expansion
Work | Goell Cutoff 1 Term 2 Terms 3 Terms | 4 Terms Indices
R!l £y ] 0 0.9023 | 0.9072 0. 9072 0.9072 | 0,4,8,...
Ry | =3Y 1,3,5,..
2 0.70 | 0.7546 | 0.7614 0. 7688 0.7695
v X, ¥
N b L
I k% ; .y .

R XY | 1.04 | 0.6107 | 0.6321 0. 6323 0.6323 | 2,6, 10,..
1 2 3 = .
nf_, r’;‘l 1.10 0.5037 | 0.5410 0. 5457 0.5458 | 0,4,8,...
RY | E}'Y | 117 | 0.5390 | 0.5446 0.5446 | 0.5446 | 2,6,10,.

RV | g%} o
2 23 b
1.41 | 0.3383 | 0.3754 0.3850 | 0.4071
1§ X, ¥
n | 2 bl
RY % % T
1.62 | 0.2300 | 0.2230 0. 2461 0.2447
iy Sk
Ry 1.74 | 0.0784 | 0.1508 | o0.1802 | 0.1902 | 0,4,8,...
e 1.81 | 0.0501 | 0.1118 | 0.1240 | 0.1243 | 2,6,10,...
i 1.87 | 0.0014 | 0.1001 0. 1089 0.1089 | 4,8,12,...

However, there are some modes for which the second term in the field expan-
sion 18 the most important one, For example, the field intensity of the R: mode
of the square guide is plotted in Figure 8. It shows peaks at two different radial
distances from the center. In the peak near the origin, the CO"O term turns out to
be the dominant one, but in the second peak the first term ratio has values ranging
up to 20 and is consistently greater than 1, showing that the C‘J‘ cos 4¢ term is
the most important one there. For this mode setting only 0“ = 0 produces the
l=term truncation result shown in Table 2. Another example in which the second
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Figure 8, Field Intensity as a Function of p /b for the Rh Mode of the Square

Guide with J 3 and Various Values of ¢. When g > 0.4b the second term
(C‘J‘ cos 4¢) dominates the field expansion, (See text)

term predominates is the degenerate R;v-R!} mode, Here, the l-term truncation

result was obtained by setting either (;33 or T33 = 0. In such cases as these, (t
is obvious from a perusal of the Table 2 results that a 1-term truncation s inade~-
quate for proper convergence and that at least three terms in the expansion are
necessary.

The mode R;" is an example in which even though the first term is dominant,
the other terms are still making a significant contribution., From Table 2 one can
see that here, also, three terms are required in the expansion,

Tables 3 and 4 give the same type of information for the R - 2 rectangle as
Tables 1 and 2 did for the square. One would expect the convergence at a given
order of truncation to become increasingly worse for higher and higher modes,
This i® borne out in Table 4. Here are shown the effects on P? of truncating up
to seventh order for the first 13 modes of the R » 2 rectangular guide at a fixed
value of 8. These results demonstrate that either a 2- or 3-term truncation is
sufficient for an accuracy of 0,01 or less in P2 for 7 of 13 modes of this rectangle,
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Table 3. Results for the Dominant (Noncutofl) Rl Mode of the Weakly Guiding 2:1
Rectangular Guide. Listed values of PZ were obtained after a 1-, 2-, 3-, or 4-
term truncation of the field expansion. The field intensity at two points on the
perimeter is also given. The field intensity at p - 0 is 1

Pz Intensity at

3 1 Term 2 Terms 3 Terms 4 Terms ¢ -0 ¢ - 7/2
3.0 0.9512 0,08732 0,9726 0.9711 0. 007 0,023
2.5 0.9333 0.9628 0, 9607 0. 9597 0. 009 0,031
2.0 0. 9035 0. 5444 0. 9406 0. 9402 0.013 0.047
1.8 0. 8488 0.9074 0. 9022 0. 9021 0,023 0.075
1.0 0.7354 0.8170 0.8116 0.8118 0.047 0.142
0.5 0. 4456 0. 5149 0.5122 0,.5124 0. 155 0.355

Furthermore, for the first mode of each family (that is, R’l‘), the single-term
truncation provides accuracies in I’2 ranging from 0,04 to 0. 14, As in the case
of the square, the l-term truncation results shown in Table 4 were obtained by

uttlizing only the dominant term in the appropriate determinantal Eq, (50) or (51).

82 Elliptical Croms Sections

The same calculations which were performed for rectangular guides were
repeated using circular (X - 1) and elliptical (R > 1) cross sections. Although the
modes for the generalized ellipse are described mathematically by the same four
forms listed in Eq. (41), they are labelled E:’ through E:‘v in order to identify them
as pertaining to the ellipse.

The propagation constants of the circular guide, which are the same (that is,
degenerate) for the sine and cosine modes, derive from single-term truncation,
They are shown over the range 0 < 8 < 2.5 in Figure 9, As R increases from 1 to
2, the sine and cosine modes split and shift. The results for ellipses with R - 1.2,
1.5 and 2 are depicted in Figures 10, 11, and 12, respectively. These modes are
qualitatively very similar to those of their rectangular counterparts shown in
Figures 4, 5, and 6. In fact, if one makes the correspondence E: ~ Rz, then the
order in which the first dozen modes of the elliptical guides reach cutoff is nearly
the same as the order for the rectangular guides. Moreover, the actual values
of 8 at cutoff are similar for the two shapes for all R. Table 5 gives the actual
values of 3 at cutoff for ellipses with 1 < R<2and also, for comparison, for the
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Figure 9. Modes of the Weakly Guiding Circular Guide
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Figure 10. Modes of the Weakly Guiding Elliptical Guide with R - 1,2
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Figure 11. Modes of the Weakly Guiding Elliptical Guide with R-1.5
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Figure 12. Modes of the Weakly Guiding Elliptical Guide with R-2
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Table 5. Values of 3 at Cutolf for Elliptical Guides with Different Aspect Ratios

IW for a li!ecungulnr Guid: with R « 2, Asterisks indicate where the designations
E
2

and [-S should be interchanged
Values of 3 at Cutoff "

Mode For Ellipse Rectangle Mode
Destgnation | R 1 |[R-1.2| R 1.5 | R 2.0 | R-2.0 | Designation
gl 0 0 0 0 0 R}
5 1
u : 1
E} 0.78 | 0.68 0.58 0. 48 0. 42 h
r:'l" 0.78 | 0.74 0.72 0. 67 0. 60 n'l"
F:'l" 1.23 | 1.12 1.01 0.92 0.77 Rll"
E; 1.23 | 1.07 0. 89 0.72 0. 64 R’2
E} 1.28 | 1.22 1.18 115 1.08 R}
E!z" 1.65 | 1.48 1.30 1.13 0. 95 “lzv
E) 1.65 | 1.50% | 1.48° | 1.37¢ 1.18 Rl
El 1.77 | 1.460 | 1.22¢ | 0.96e 0. 87 R

- .77 ] 172 1. 68
EI: 2.03 | 1.82 1.52 1.20 1,12 RY
*7]2" 2.03 | 1.83 1. 60 1.35 1.14 R‘z"

£

rectangular guide with -2 Furthermore, the correspondence between the Ez‘
and Rz modes extends to the field configurations, which comprise very similar
patterns.

The qualitative similarities between modes of the rectangular and elliptical
guides approach numerical agreement as the aspect ratio becomes large. In fact,
for R = 10 the first few modes of either shape guide are virtually indistinguishable
for 3 > 1.5. In general, the propagation constants for either differ by more than
0.03 only very close to cutoll,
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83 Other Shapes

We have used our technique to study the propagation modes of guides of cer-

tain other shapes obtainable from Eq. (60), mostly with R =1, Among these were

5

superellipses with N - 2 and N © 5, and a cusped shape deriving from N - 0.3,

See Figures 13 through 15,

1 Op
pt

oo}

o.6)F

op

Figure 13, Modes of the Weakly Guiding Superelliptical Guide with R=1, N=2
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Figure 14. Modes of the Weakly Guiding Superelliptical Guide with R - 1, N - 5
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Figure 15, Modes of the Weakly Guiding Cusp-Shaped Guide with N1, N 0.3

There are many similarities between the elliptical and rectangular guides, so
it 18 no surprise that all the measurable characteristics of the intermediate super-
elliptical shape (the propagation constants, field configurations, cutofl values,
order of the modes, dependence on ﬂ, convergence of the series) fall between
those of the two former shapes. In fact, for N + 2 and R 1, the superellipse
(Figure 12) is closer to the square than the circle in all respects, and for N - §
(Figure 14) it 18 practically indistinguishable from the square., For R 1the
modes all shift in a smooth and orderly manner as N changes from 1 to 30,

The convergence of the series is marginally better for the elliptical shape
than for the superellipses and rectangles.

The cusped shape (Figure 15) is quite different in appearance, and the charac-
teristics of the modes reflect this, The order in which the modes cut off is quite
different, as are the propagation constants themselves,

8.4 “Evolution™ of the Modes

One can demonstrate that the individual modes "evolve" as the aspect ratio
changes. Figures 16 to 20 show the propagation constants of certain selected

42




' Op
P.

oef

o2

Figure 16,
from 1 to 2

0.% 100 8 190 200 2%

The R{, Mode of the Weakly Guiding Rectangular Guide as R Changes
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Figure 17. The RY Mode of the Weakly Guiding Rectangular Guide as R Changes

from 1 to 10
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Mode of the Weakly Guiding Rectangular Guide as R Changes

Figure 19, The R'l Mode of the Weakly Guiding Rectangular Guide as X Changes
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Figure 21. Variation of P? with Change in Aspect Ratio for the First Five Modes
of the Weakly Guiding Rectangular Guide at Two Values of 3




modes versus 3 for different rectangular cross sections, ranging from a square
to an elongated rectangle. The behavior depicted here is typical of all modes in
that cutoff occurs at smaller 3 as R increases. The evolution of these same five f
modes for a continuous change in R is displayed in Figure 21 for two values of 8,

For certain modes the dependence of Pz on R is much stronger than for most
others. This is especially evident in the R; mode (see Figures 16 and 21) and the
B! (Figures 17 and 21). The R}" mode (Figures 18 and 21), which is degenerate
with the Rlll for N - 1, shows only a very small dependence on R. This difference
can be understood when one refers to the field diagrams for the various modes as
shown in Goell. 2 The RY!

1
tion) and one along the y-axis, whereas the reverse holds true for Rllv. As the

field has two maxima along the x-axis (the long direc-

x-dimenston is lengthened, the two Rlll lobes spread a considerable distance from

4
the center along the x-axis, whereas the R“‘ maxima, although squeezed some-

what, do not shift so dramatically. In other words, the greater distortion of the
“lll field results in a greater change in the propagation constant as R increases.
The same holds true for R!, and Rl3 (three maxima in one direction, one in the

other) and Rl; and Rgv (!nu.r and one). As a contrast, Figures 19, 20, and 21 i 9
display examples u!.nu-dcruu- dependence on N, as evidenced by the Rll and R:u
modes, respectively, In Figure 21 one can see much more vividly such effects

l;_“ll\' mode as the cross section departs

2

as the aplitting of the degeneracy in the R
from a square, and, the crossing of the R propagation constant curve with those
of the Rll"

One can also see from figures such as 17, 18, and 21 that for very elongated

and lev modes as R increases.

rectangles (R 2 5) the propagation constant is independent of R except at small 3.
This suggests that the greatest field strengths occur near the center and that the
intensaity at the ends 18 considerably less. This is indeed true except near cutoff
{small J) where the field spreads throughout the guide and extends into the sur-
rounding region,

In tracing the "evolution” of 8 mode as N increases one can avoid confusion by

examining the field configurations, It happensa, for example, that the Rlzl mode

for R=< 1.2 corresponds to the R!l' mode for R > 1. 5, and vice versa. That is,
the field patterns show that the s;mc mode which derives from the second root of
the equation det ((G) - 0 when the shape (s close to square, corresponds to the third
root when the cross section becomes elongated, Put another way, individual modes
may "cross over as N changes (just as they may as 3 changes). However, the j
designation R: is defined for a particular guide (R fixed), so corresponding modes
can be labelled differently for different . In Table 5 a similar circumstance
occurs for ellipses,

For the first mode of each family (namely R"‘t we find that the series converges
nearly as well for large aspect ratios (?t ~ 10) as for cases with R close to unity,
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and four-term truncation provides reasonable accuracy for the second modes as
well, However, for the higher modes of each family, 5, 6, and even 7 terms
were required before the values of Pz would be obtained to within 0, 03 for such
elongated cross sections,

Figure 22 exhibits the same information for the ellipse as was displayed in
Figure 21 for the rectangle, As before, one can see how sensitive each mode 18
-E}Y) which is
degenerate for a circular (R« 1) cross section splits as the cross section becomes
elliptical,

to change in aspect ratio, and, how a mode (for example, the Ell]

- o - B s 1.0

— B 20

o A J
1.0 1.8 20

Figure 22, Variation of P2 with Change in Aspect Ratio for Some of the First
Few Modes of the Weakly Guiding Elliptical Guide at Two Values of 3

Figures 16 to 22 demonstrate how different modes are affected by a change
in the aspect ratio () for a fixed rectangular or elliptical shape. This was
accomplished by keeping N constant in Eq. (60) and varying N. o course, sim-
tlar types of analyses could be carried out for changes in shape (N) as the aspect
ratio remains fixed,




It is well known that the problem of finding the propagation constants of a
waveguide having a particular geometry is identical to the problem of finding the
energy levels of a quantum mechanical potential well whoss potential has the same
geometry as the waveguide. The Helmholtz equation inside the well, given by
(vf * !V’ - ll-:])q « 0, where ;Vl is the well depth, ‘El is the energy level depth
and { is the wave function, is the quantum mechanical counterpart of our Eq. (2).
The Helmholtz equation outside the well, given by (vi - |El)¢ + 0, is the quantum
counterpart to our Eq. (3), Thus, for the cases considered here, there is a one-
to-one correspondence between the appropriate component of the electromagnetic
field (E, B, or @ and the quantum wave function (¢), between IV! - !Ff and

3 kf - k: between |E| and 7: = kz - kg, and between |V] and 13 + 72 .
k% - h;. Moreover, the variation in g)e propagation constants of the various modes
with changing R but fixed shape (see Figures 16 and 22) is suggestive of the changes
which the energy levels would experience, including splitting of degeneracies, as
a perturbing influence ts applied to the potential well. For the waveguide cases
treated in Figures 16 to 22, the role of the perturbation is played by the changes
in the guide's aspect ratio as its shape remains fixed. Also, as was mentioned
above, it is possible that the role of the perturbation could be played by the changes
in the guide's shape for a constant aspect ratio,

83 Comparison With Other Work

In order to test the efficacy of our method we compare our results with pre-
viously published data,

For guides of square and rectangular cross sections, there are mainly the
results of Goell. : His method consists of matching field components across the
waveguide boundaries at a large number of points and then, similar to our method,
obtaining a determinanta! equation whose solutions are the propagation constants.
From these solutions he then determines the coelficients in his field expansions.
Marcatili, ’ employing a similar method, analyzes a few cases of the rectangular
guide having various aspect ratios. Eyges, 13 on the other hand, utilizing the per-
turbation techniques mentioned in Section 6, investigates some of the lower modes
for guides having small values of R. Both authors report data which are in general
agreement with Goell. :

Some of Goell's results from the first six modes are shown in Figure 3 for the
square and in Figure 6 for the R-2 rectangle. They were taken as carefully as
possible from his Figures 16 and 17 (square and & : 2 rectangle, respectively),
taking note of the fact that his 3 differs from ours by a factor of 2. Also in
Figure 6 we show the results from the perturbation prescription for the dominant
(R)) mode of the R - 2 rectangle. (It turns out that the latter method predicts

1
values of P2 for the dominant mode equal to those of a circular guide of the same
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area). For the dominant mode (!‘?:' : tn Goell's notation) there is no discernible
difference between his curve and ours, and only small differences for the perturba-
tion analysis results. For several other modes there are nearly uniform differ-
ences of less than 0,07 in P2 between Goell's resuits and ours, That is, the
curves are adjacent and parallel, and certainly correspond to each other. For
the square guide, the same type of results have also been found.

Many qualitative features which can be seen in our Figures 3 and 6 — such as

the splitting of R; and R_.l' (square) near cutoff and the crossing of Rllv and R‘z
(rectangle) — are also present in Goell's curves, although there are numerical

discrepancies, Only with the Rll" (E;' ;) mode of the rectangle are there dis-

crepancies greater than 0.1 in P7,
With the square guide, all the odd modes are degenerate in pairs (sine and

cosine) because of symmetry, (See Figure 3 and Table 2,) Moreover, except

for R} and R,

ate in pairs away from cutoff. This can be seen clearly in Figure 3 for the
R!‘,-R!‘ modes. Furthermore, if the j-axis were extended to larger values, then
this degeneracy would be more apparent for the l!;"-R;"

those even modes in which the first term dominates are degener-

modes, as well as for
higher modes which are not shown,

As a result of the foregoing, one could take a linear combination of the field
expansions for two of these modes and derive an intensity pattern corresponding
to neither of the individual modes, but rather to the combination. In fact, with
our technique this would automatically occur tf one did not recognize the simplifi-
cations implied by the symmetry and therefore effect the separation of the field
expansionsa at the beginning. In Goell's Figure 5, intensity patterns for those
modes which are degenerate reflect this combination of what appear — especially
for the even indices —to be distinct modes. For rectangular cross sections
(R > 1) our field intensity patterns agree with Goell's (see his Figure 6),

For guides of circular cross section, there are the works of (;Ioge' and Yeh.”
All of our results for this cross section agree very well with theirs. Yeh, how-
ever, also reports data for guides of elliptical cross section. A comparison or
our results with his was frustrated by what may be either notational difficulties or
a real discrepancy. The problem is that Yeh lists what appear to be two different,
but degenerate, modes for the circular guide; euz“ and OHE“ in his notation,
Then, as the circle deforms into an ellipse, he shows each of these modes becom-

ing a nondegenerate mode, with the propagation constants of one mode being
greater in magnitude than those of the circular guide and those of the other mode
being less. However, as can be seen in Figure 22, we find just one dominant
mode (E") for the circle which does not split into two modes as R increases. In

addition, our results for this single noncutoff mode agree very we’'l with a

17. Yeh, C. (1976) Opt. and Quant. Elect. 8:43.
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perturbation calculation based on Eyges. 13

Furthermore, Yeh's data for an
elliptical guide having an aspect ratio of 2, 164 do not correspond at all to our
results for either an K - 2 ellipse (plotted in Figure 12) or an R - 2164 ellipse,
Hence, we are unable to correlate our results with his,

In view of the fact that our results for the rectangle and square agree quite
closely with thase of Goell and the fact that his point-matching method requires
the evaluation of a determinant of order 4N, with 3 < N < 9, the economy of our
method becomes obvious, Furthermore, unlike the differential equation approach
utilized by Goell, our integral representation technique avoids the necessity of
having to use a coordinate system dictated by the guide's cross-sectional shape
as well as the special functions characteristic of that system. This means that
in the case of the elliptic guides, for example, one need not be forced to use
elliptic cylinder coordinates nor the complicated Mathieu functions associated

with such coordinates,

9. CONCLUSION

The objectives of this paper have been (1) to present a general method by
which the equations for the propagation constants of fiber waveguides of arbitrary
cross sectional shapes may be written in a form suitable for efficient computation;
(2) to specialize the method for weakly guiding fibers; and (3) to present limited
results for the latter case to demonstrate the correctness and efficiency of the
approach. The extension of this technique to coupled waveguides is currently in

Progress,
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